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COMMENT 

Singular point analysis, resonances and Yoshida's theorem 
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+ Department of Physics, Rand Afrikaans University, PO Box 524, Johannesburg 2000, 
South Africa 
$ Department of Applied Mathematics, University of the Orange Free State, Bloemfontein 
9300. South Africa 

Received 9 January 1987 

Abstract. Yoshida described a connection between scale-invariant autonomous systems of 
ordinary differential equations, algebraic first integrals and resonances. In his analysis it 
is assumed that the scale invariance determines the dominant behaviour. Here we discuss 
the case where the dominant behaviour is not determined by the scale invariance. For the 
constructed example we also give the Lax representation. 

Many authors (cf Steeb et al 1985, Steeb and Louw 1986 and references therein) have 
investigated dynamical systems with the help of the singular point analysis (also called 
the PainlevC test) in order to find out whether or not the systems are integrable. In 
most cases the PainlevC test has been applied as a recipe. If a given differential equation 
passes the PainlevC test, then in many cases the equation is integrable and one can try 
to find the first integrals in order to integrate the equation. 

Recently, Yoshida ( 1983a,b) derived a connection between scale-invariant 
autonomous systems of ordinary differential equations of first order 

uj = F,( U )  (1) 

(j = 1, . . . , n )  algebraic first integrals and resonances (Kowalevski's exponents). Here e( U )  is a rational function of u I  , . . . , U,. The starting point in Yoshida's analysis is 
the scale invariance of system (1) under 

t 3 & - I t  U ,  + & g ' u l  . . .  U, + &%l, ( 2 )  

for a set of rational numbers g , ,  . . . , g,. Then he assumed that system (1) admits a 
non-trivial solution of the form uj( t )  = where T = 1 - t l  . With these assumptions 
he gave the following theorem. 

Theorem. Let Z ( u )  be a weighted homogeneous algebraic first integral of weighted 
degree r for the similarity invariant system (1). Suppose that the elements of the vector 
grad I ( a , )  are finite and not identically zero for a fixed choice of the set a,,, . . . , a,, 
in e ( a l 0 , .  . . , a,,) = -gjajo. Then r is a resonance. 

Now there are many systems of interest which are scale invariant under the transforma- 
tion ( 2 ) .  Nevertheless they do  not admit non-trivial solutions U,( t )  = a,o~-gl ( j  = 
1, .  . . , n ) ,  i.e. one finds a,,=O for j =  1 , .  . . , n. This case has not been studied by 
Yoshida (1983a,b). In  the present comment we discuss this case. To this purpose we 
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construct a hierarchy of scale-invariant autonomous systems of ordinary differential 
equations. This class belongs to the Lotka-Volterra models. The PainlevC test will be 
performed. Furthermore we give the Lax representation L, = [A,  L] .  The first integrals 
are given by Tr( L k )  ( k  = 1 ,  2, . . .). It turns out that the system is algebraically completely 
integrable. 

We start from the partial differential equation U, + uUU, = 0 with initial condition 
U ( x ,  0) = U o ( x )  and periodic boundary condition U ( 0 ,  t )  = U (  1, t ) .  The quantity U 

is a positive constant. This equation is well known in literature. To obtain an 
autonomous system of first-order differential equations we perform the semidiscretisa- 
tion U(hj ,  t )  + u j ( t ) .  This yields 

with j = 1, .  . . , n ( n  2 3), -1 s 8 s 1 and cyclic boundary conditions 0 = n, n + 1 = 1. 
In the following we put 8 = 0 and perform the scaling such that t -P - u t / 2 h .  Then we 
arrive at 

lil = UI( U 2  - U,) 

U, = U , ( U I  - u n - l ) .  

For this system we discuss the singular point analysis and Yoshida’s theorem given 
above. 

First of all we notice 
m j ( j  = 1, .  . . , n). Owing to 

and  

that system (4) is scale invariant under t +  & - I t ,  uJ + 

the cyclic boundary conditions we find that 

are polynomial first integrals of system (4). For n 2 4 we obtain the further first integral 

For a given n we find n - 1  polynomial first integrals and  thus the system (4) is 
algebraically completely integrable. 

Let us first discuss the case n = 3 in detail. The Lax representation is given by 

: 1. (8) L = [ : 2  0 *=[ 1 u,+u3 

1 U1 u , + u 2  0 

1 U 3  0 1 u , + u 3  

The first integrals are given by Tr L2 and Tr L3. Let us now perform the PainlevC test. 
Owing to the scale invariance we are motivated to try the ansatz U,( t )  = a j O ~ - ’  where 
j = 1 , 2 , 3  and ajO f 0. Inserting this ansatz into system (4) leads to 

u 1 0 ~ ‘ 2 0 ~ u 3 0 ~  -a20 = a 2 0 ( 0 3 0  - ala) -a30 = a30(a30-  
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Consequently, we only find the trivial solution a,, = a,, = a3" = 0. Thus the ansatz 
motivated from the scale invariance does not work. A successful ansatz for the dominant 
behaviour is given by 

u , ( t ) a  U ~ , T - I  u , ( t ) a  a,,~-' u . l ( f ) a  a307,.  (9) 

Since system (4) with n = 3 is invariant under U ,  + U,, U,+ u3,  u3 .+ U ,  we find more 
than one branch. However, without loss of generality we can restrict our consideration 
to branch (9). Inserting ansatz (9) into system (4) we obtain the system with the 
dominant terms 

ti,  = u,u2 tiz= -u ,uz  t i 3  = U,( U1 - u2) (10) 

where a,, = 1 ,  a,, = -1  and a3, is arbitrary. The first integrals of system (10) are given 
by I , (  U )  = U ,  + U, and I,( U )  = ~ 1 ~ 2 ~ 3 ,  System (10) is scale invariant under t -+ E - '  t ,  
U ,  + E U ~ ,  u 2 +  E U , ,  u 3 +  &OLu3 where cy is arbitrary ( C Y  # 0). The resonances of system 
(10) are given by rl = -1 ,  r2=0 (related to a3,) and r3= 1 .  Due to the theorem of 
Yoshida the first integral I ,  corresponds to the resonance r3= 1 since 
Z , ( E U ~ ,  E U ~ ,  

E * + ~ Z , ( U , ,  U,, u 3 ) .  Thus this first integral can only be associated with the resonance 
r2=0 when CY = -2. 

= E I ~ ( U ~ ,  u 2 ,  u 3 ) .  On the other hand, we find I , ( E u , ,  E U ~ ,  

Inserting the Laurent expansion 

where j = 1 ,  2, we find that system (4) ( n  = 3) passes the Painleve test. 

A is given by 
Before we study the general case let us discuss the case n = 4. The Lax pair L and 

It is interesting to note that Tr L = 0, Tr L2 = 2Z,, Tr L3 = 0, Tr L4 = 4 + 41, + 2 If - 41,. 
Inserting the ansatz U,( t )  = U , ~ T - '  leads to the trivial solution a,, = . . . = ado = 0. A 
successful ansatz for the dominant behaviour is given by 

where j =  1 ,  2 and k = 3 ,  4. Notice that there are other branches since system (4) 
( n  = 4 )  is invariant under uI -, u 2 ,  U,+ u 3 ,  u 3 +  u4, U,+ u I .  However, without loss of 
generality we can restrict our consideration to ansatz (13) .  Inserting ansatz (13 )  into 
(4) ( n  = 4) we find the system with the dominant terms, namely 

ti, = UlU, U, = -uzu,  t i 3  = - UJU2 ti, = u4u1 (14) 

where a,, = 1 ,  a,, = - 1  and ~ 3 0 ,  a40 are arbitrary. The first integrals of system (14) are 
given by Z , ( u )  = U,+ u 2 ,  Z,(u) = ~ 1 ~ 2 ~ 3 ~ 4  and Z3(u)  = u I u 3 +  +U,. For the resonances 
we obtain r ,  = - 1 ,  r2 = 0 (twofold) and r3 = 1 .  The resonance r,  = 0 (twofold) is related 
to the arbitrariness of a30 and ~ 4 0 .  Again I ,  is related to the resonance r3 = 1. System 
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(14) is scale invariant under u I  + & u I ,  u2+ &u2, u3+ &OLu3 and u4-, ePu4 where a and 
are arbitrary (a ,  p #O). Then Z2(eulr &u2,  E ~ u ~ ,  &'u4) = E * + ~ + ' Z ~ ( U ~ ,  u 2 ,  u 3 ,  u4) and 

Z ~ ( E U ~ ,  &u2,  &Ou4) = ~ ' + " u , u ~ + ~ ' + ' u ~ u ~ .  We find that system (4) with n = 4  
passes the Painlev6 test. 

For arbitrary n the Lax representation is given by 

where j = 1, . . . , n and 0 = n, 1 = n + 1, etc. The parameter A is time independent. As 
described already for n = 3 and n = 4 the ansatz U,( t )  = a, ,~- '  gives only the trivial 
solution. Consequently, not every term in system (4) can be dominant. The ansatz 
U,( t )  a to find the dominant behaviour leads to positive and negative integers 
for ( k , ,  , . . , k , ) .  Owing to the discrete symmetry U ,  + u 2 , .  . . , U, + u I  of system (4) we 
find more than one branch. We must distinguish between n odd and n even. Then it 
can be shown that system (4) passes the Painlev6 test for arbitrary n. Not all first 
integrals correspond to resonances. 

To summarise: the constructed hierarchy of equations shows that the theorem of 
Yoshida which connects algebraic first integrals and resonances cannot be applied, in 
general, to scale-invariant autonomous systems of ordinary differential equations. The 
method fails in the constructed example since, from the scale-invariant system (4), it 
does not follow that the dominant behaviour is given by U,( t )  = U , ~ T - '  with U,, # 0. 
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